Quasi Maximum-Likelihood Estimation of Dynamic Panel Data Models
نویسنده
چکیده
This paper establishes the almost sure convergence and asymptotic normality of levels and differenced quasi maximum-likelihood (QML) estimators of dynamic panel data models. The QML estimators are robust with respect to initial conditions, conditional and time-series heteroskedasticity, and misspecification of the log-likelihood. The paper also provides an ECME algorithm for calculating levels QML estimates. Finally, it uses Monte Carlo experiments to compare the finite sample performance of levels and differenced QML estimators, the differenced GMM estimator, and the system GMM estimator. In these experiments the QML estimators usually have smaller — typically substantially smaller — bias and root mean squared errors than the panel data GMM estimators.
منابع مشابه
QML Estimation of Dynamic Panel Data Models with Spatial Errors
We propose quasi maximum likelihood (QML) estimation of dynamic panel models with spatial errors when the cross-sectional dimension n is large and the time dimension T is fixed. We consider both the random effects and fixed effects models and derive the limiting distributions of the QML estimators under different assumptions on the initial observations. We propose a residual-based bootstrap met...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملQuasi-Maximum Likelihood Estimation for Spatial Panel Data Regressions
This article considers quasi-maximum likelihood estimations (QMLE) for two spatial panel data regression models: mixed effects model with spatial errors and transformed mixed effects model (where response and covariates are transformed) with spatial errors. One aim of transformation is to normalize the data, thus the transformed models are more robust with respect to the normality assumption co...
متن کاملEstimation of spatial autoregressive panel data models with xed e¤ects
This paper establishes asymptotic properties of quasi-maximum likelihood estimators for xed e¤ects SAR panel data models with SAR disturbances where the time periods T and/or the number of spatial units n can be nite or large in all combinations except that both T and n are nite. A direct approach is to estimate all the parameters including xed e¤ects. We propose alternative estimation meth...
متن کاملQuasi-Maximum Likelihood Estimators For Spatial Dynamic Panel Data With Fixed E¤ects When Both n and T Are Large
This paper investigates the asymptotic properties of quasi-maximum likelihood estimators for spatial dynamic panel data with xed e¤ects when both the number of individuals n and the number of time periods T are large. We consider the case where T is asymptotically large relative to n, the case where T is asymptotically proportional to n, and the case where n is asymptotically large relative to...
متن کامل